
Space Time Adaptive Processing (STAP) is a two-dimensional adaptive filtering technique which uses jointly temporal and spatial dimensions to suppress disturbance and to improve target detection. Disturbance contains both the clutter arriving from signal backscattering of the ground and the thermal noise resulting from the sensors noise. In practical cases, the STAP clutter can be considered to have a low rank structure. Using this assumption, a low rank vector STAP filter is derived based on the projector onto the clutter subspace. With new STAP applications like MIMO STAP or polarimetric STAP, the generalization of the classic filters to multidimensional configurations arises. A possible solution consists in keeping the multidimensional structure and in extending the classic filters with multilinear algebra. Using the low-rank structure of the clutter, we propose in this paper a new low-rank tensor STAP filter based on a generalization of the Higher Order Singular Value Decomposition (HOSVD) in order to use at the same time the simple (for example time, spatial, polarimetric, …) and the combined information (for example spatio-temporal). Results are shown for two cases: classic 2D STAP and 3D polarimetric STAP. In the classic case, vector and tensor filters are equivalent. In the polarimetric case, we show the enhancement of the tensor filter.
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
