
While scalable coherence has been extensively studied in the context of general purpose chip multiprocessors (CMPs), GPU architectures present a new set of challenges. Introducing conventional directory protocols adds unnecessary coherence traffic overhead to existing GPU applications. Moreover, these protocols increase the verification complexity of the GPU memory system. Recent research, Library Cache Coherence (LCC) [34, 54], explored the use of time-based approaches in CMP coherence protocols. This paper describes a time-based coherence framework for GPUs, called Temporal Coherence (TC), that exploits globally synchronized counters in single-chip systems to develop a streamlined GPU coherence protocol. Synchronized counters enable all coherence transitions, such as invalidation of cache blocks, to happen synchronously, eliminating all coherence traffic and protocol races. We present an implementation of TC, called TC-Weak, which eliminates LCC's trade-off between stalling stores and increasing L1 miss rates to improve performance and reduce interconnect traffic. By providing coherent L1 caches, TC-Weak improves the performance of GPU applications with inter-workgroup communication by 85% over disabling the non-coherent L1 caches in the baseline GPU. We also find that write-through protocols outperform a writeback protocol on a GPU as the latter suffers from increased traffic due to unnecessary refills of write-once data.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 95 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
