
In this paper a new approach of an auto calibration method for micromechanical sensors is proposed. In particular, recalibration of acceleration sensors without any additional laboratory equipment is considered. If the device is stationary, the proposed procedure exploits the fact that the output vector of the acceleration sensor should match the gravity acceleration. The calibration method computes the scale factors and the bias components of the unbalanced acceleration sensor. These parameters are computed through nonlinear optimization. The applied optimization method is a nonlinear parameter estimator based on the Unscented Transformation. This methodology uses the robust statistical linearization instead of the common analytical linearization. In addition, the applied methodology minimizes the amount of temporarily stored measurement data which are mandatory to launch the recalibration algorithm. Reducing the amount of temporarily stored data is equivalent to reducing the memory space and the power required for the algorithm. An effective method for rejecting disturbance acceleration is also included in order to apply user generated data for the recalibration. First the calibration method is evaluated through simulations and second with real data generated by an acceleration sensor. The simulation results show that the algorithm estimates the offset and sensitivity parameters more precisely than the uncertainty introduced through the measurement noise.
Accelerometer; Autocalibration; Microelectromechanical system (MEMS); Motion capture; Sensor model
Accelerometer; Autocalibration; Microelectromechanical system (MEMS); Motion capture; Sensor model
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 159 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
