Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
University of Bath's research portal
Contribution for newspaper or weekly magazine . 2021
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/igarss...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-INSU
Conference object . 2021
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Sorbonne Université
Conference object . 2021
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Demonstrated Aeolus Benefits in Atmospheric Sciences

Authors: Rennie, Michael; Stoffelen, Ad; Khaykin, Sergey; Osprey, Scott; Wright, Corwin; Banyard, Tim; Straume, Anne Grete; +5 Authors

Demonstrated Aeolus Benefits in Atmospheric Sciences

Abstract

We highlight some of the scientific benefits of the Aeolus Doppler Wind Lidar mission since its launch in August 2018. Its scientific objectives are to improve weather forecasts and to advance the understanding of atmospheric dynamics and its interaction with the atmospheric energy and water cycle. A number of meteorological and science institutes across the world are starting to demonstrate that the Aeolus mission objectives are being met. Its wind product is being operationally assimilated by four Numerical Weather Prediction (NWP) centres, thanks to demonstrated useful positive impact on NWP analyses and forecasts. Applications of its atmospheric optical properties product have been found, e.g., in the detection and tracking of smoke from the extreme Australian wildfires of 2020 and in atmospheric composition data assimilation. The winds are finding novel applications in atmospheric dynamics research, such as tropical phenomena (Quasi-Biennial Oscillation disruption events), detection of atmospheric gravity waves, and in the smoke generated vortex associated with the Australian wildfires. It has been applied in the assessment of other types of satellite derived wind information such as atmospheric motions vectors. Aeolus is already successful with hopefully more to come.

Countries
France, United Kingdom, United Kingdom
Keywords

optical properties, Aeolus, [PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], winds, DWL, NWP, /dk/atira/pure/subjectarea/asjc/1900/1900; name=General Earth and Planetary Sciences, atmospheric dynamics, /dk/atira/pure/subjectarea/asjc/1700/1706; name=Computer Science Applications

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green