
We present a supervised learning to rank algorithm that effectively orders images by exploiting the structure in image sequences. Most often in the supervised learning to rank literature, ranking is approached either by analysing pairs of images or by optimizing a list-wise surrogate loss function on full sequences. In this work we propose MidRank, which learns from moderately sized sub-sequences instead. These sub-sequences contain useful structural ranking information that leads to better learnability during training and better generalization during testing. By exploiting sub-sequences, the proposed MidRank improves ranking accuracy considerably on an extensive array of image ranking applications and datasets.
Technology, Science & Technology, PSI_3979, Computer Science, PSI_VISICS, Computer Science, Artificial Intelligence
Technology, Science & Technology, PSI_3979, Computer Science, PSI_VISICS, Computer Science, Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
