
Given a stabilizable linear system Ex/spl dot/ = Ax + Bu with sE - A regular, we analyze the stability robustness of the closed-loop system (E + BK) = (A + BF)x + v, obtained by proportional and derivative (PD) state feedback u = Fx Kx/spl dot/ + v. Our goal is to maximize the stability radius of the closed-loop system matrix s(E + BK) - (A + BF) over all stabilizing PD state feedback control laws. This problem turns out to be equivalent to a particular H/sup /spl infin//control problem for a generalized state-space system and reduces to a system of matrix inequalities. Under certain conditions the problem actually reduces to an LMI system. We also show how to apply these ideas to higher order dynamical systems.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
