
doi: 10.1109/26.141424
Two fundamentally different techniques for compressing stereopairs are discussed. The first technique, called disparity-compensated transform-domain predictive coding, attempts to minimize the mean-square error between the original stereopair and the compressed stereopair. The second technique, called mixed-resolution coding, is a psychophysically justified technique that exploits known facts about human stereovision to code stereopairs in a subjectively acceptable manner. A method for assessing the quality of compressed stereopairs is also presented. It involves measuring the ability of an observer to perceive depth in coded stereopairs. It was found that observers generally perceived objects to be further away in compressed stereopairs than they did in originals. It is proved that the rate distortion limit for coding stereopairs cannot in general be achieved by a coder that first codes and decodes the right picture sequence independently of the left picture sequence, and then codes and decodes the left picture sequence given the decoded right picture sequence. >
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 192 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
