Downloads provided by UsageCounts
arXiv: 1807.02285
Bianisotropy is common in electromagnetics whenever a cross-coupling between electric and magnetic responses exists. However, the analogous concept for elastic waves in solids, termed as Willis coupling, is more challenging to observe. It requires coupling between stress and velocity or momentum and strain fields, which is difficult to induce in non-negligible levels, even when using metamaterial structures. Here, we report the experimental realization of a Willis metamaterial for flexural waves. Based on a cantilever bending resonance, we demonstrate asymmetric reflection amplitudes and phases due to Willis coupling. We also show that, by introducing loss in the metamaterial, the asymmetric amplitudes can be controlled and can be used to approach an exceptional point of the non-Hermitian system, at which unidirectional zero reflection occurs. The present work extends conventional propagation theory in plates and beams to include Willis coupling, and provides new avenues to tailor flexural waves using artificial structures.
21 pages, 3 figures
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS]Physics [physics]/Physics [physics], Physics, QC1-999, FOS: Physical sciences, Acoustics, Physics - Applied Physics, Applied Physics (physics.app-ph), 530, Metamaterials, [PHYS.PHYS] Physics [physics]/Physics [physics]
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS]Physics [physics]/Physics [physics], Physics, QC1-999, FOS: Physical sciences, Acoustics, Physics - Applied Physics, Applied Physics (physics.app-ph), 530, Metamaterials, [PHYS.PHYS] Physics [physics]/Physics [physics]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 6 | |
| downloads | 11 |

Views provided by UsageCounts
Downloads provided by UsageCounts