<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 1887/82468
Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of "dark ages" and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the formation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-$��$ forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.
matches published version
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |