
We studied the rate of spontaneous emission from colloidal CdSe and CdTe nanocrystals at room temperature. The decay rate, obtained from luminescence decay curves, increases with the emission frequency in a supra-linear way. This dependence is explained by the thermal occupation of dark exciton states at room temperature, giving rise to a strong attenuation of the rate of emission. The supra-linear dependence is in agreement with the results of tight-binding calculations.
11 pages
Condensed Matter - Materials Science, [SPI] Engineering Sciences [physics], International, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, METIS-225662, IR-53203
Condensed Matter - Materials Science, [SPI] Engineering Sciences [physics], International, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, METIS-225662, IR-53203
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 173 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
