Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preparing Bacterial Genomic DNA

Authors: Nara Figueroa-Bossi; Roberto Balbontín; Lionello Bossi;

Preparing Bacterial Genomic DNA

Abstract

We describe two alternative procedures for purifying bacterial chromosomal DNA. The first procedure incorporates the use of a commercial kit based on silica membrane technology. This approach relies on the selective binding of DNA to a silica-based column in the presence of chaotropic salts (guanidine salts). Polysaccharides and proteins do not bind well to the column and flow through. Their residual traces, along with the guanidine salts, are removed during alcohol-based wash steps. The DNA is then selectively eluted under low-salt conditions. This method is quick and easy and yields genomic DNA suitable for most downstream applications. The second procedure, implemented for many years in our laboratory before the appearance of commercial kits, is based on the ability of the cationic detergent cetyl trimethyl ammonium bromide (CTAB) to complex with polysaccharides and proteins, producing an emulsion that can be removed by chloroform–isoamyl alcohol extraction. This procedure is therefore especially suited to working with Gram-negative bacteria, which typically produce large amounts of polysaccharides. Its main advantage, besides cost-effectiveness, is the high yield of the DNA obtained; its main disadvantage is that the workflow is relatively cumbersome.

Keywords

DNA, Bacterial, Bacteria, Cetrimonium, Detergents, DNA, Genomics, Silicon Dioxide, Guanidines, Emulsions, Salts, Chloroform

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!