Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

To GEE or Not to GEE

Comparing Population Average and Mixed Models for Estimating the Associations Between Neighborhood Risk Factors and Health
Authors: Alan E, Hubbard; Jennifer, Ahern; Nancy L, Fleischer; Mark, Van der Laan; Sheri A, Lippman; Nicholas, Jewell; Tim, Bruckner; +1 Authors

To GEE or Not to GEE

Abstract

Two modeling approaches are commonly used to estimate the associations between neighborhood characteristics and individual-level health outcomes in multilevel studies (subjects within neighborhoods). Random effects models (or mixed models) use maximum likelihood estimation. Population average models typically use a generalized estimating equation (GEE) approach. These methods are used in place of basic regression approaches because the health of residents in the same neighborhood may be correlated, thus violating independence assumptions made by traditional regression procedures. This violation is particularly relevant to estimates of the variability of estimates. Though the literature appears to favor the mixed-model approach, little theoretical guidance has been offered to justify this choice. In this paper, we review the assumptions behind the estimates and inference provided by these 2 approaches. We propose a perspective that treats regression models for what they are in most circumstances: reasonable approximations of some true underlying relationship. We argue in general that mixed models involve unverifiable assumptions on the data-generating distribution, which lead to potentially misleading estimates and biased inference. We conclude that the estimation-equation approach of population average models provides a more useful approximation of the truth.

Related Organizations
Keywords

Likelihood Functions, Models, Statistical, Health Status, Population, Logistic Models, Residence Characteristics, Risk Factors, Linear Models, Humans, Regression Analysis, Epidemiologic Methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    872
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
872
Top 0.1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!