
Calculations of the electrostatic field of DNA in two very different double helical conformations, A and Z, are reported and compared with the results previously obtained for B-DNA. Striking contrasts between these fields and the associated electrostatic potentials are brought into evidence. One of the major differences is that while the deepest potentials are generally located in the grooves of DNA, the strongest fields are associated with the phosphate groups. The results of screening the nucleic acids by counterions are also presented.
Models, Molecular, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Electrochemistry, Potentiometry, Nucleic Acid Conformation, DNA
Models, Molecular, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Electrochemistry, Potentiometry, Nucleic Acid Conformation, DNA
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
