
Abstract We introduce a substructural modal logic of utility that can be used to reason aboutoptimality with respect to properties of states. Our notion of state is quite general, and is able to represent resource allocation problems in distributed systems. The underlying logic is a variant of the modal logic of bunched implications, and based on resource semantics, which is closely related to concurrent separation logic. We consider a labelled transition semantics and establish conditions under which Hennessy—Milner soundness and completeness hold. By considering notions of cost, strategy and utility, we are able to formulate characterizations of Pareto optimality, best responses, and Nash equilibrium within resource semantics. We also show that our logic is able to serve as a logic for a fully featured process algebra and explain the interaction between utility and the structure of processes.
Pareto optimality, bunched logic, Substructural logic, Nash equilibrium, resource semantics, Hennessy—Milner logic utility, process algebra, modal logic
Pareto optimality, bunched logic, Substructural logic, Nash equilibrium, resource semantics, Hennessy—Milner logic utility, process algebra, modal logic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
