Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Logic and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Logic and Computation
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

A modal logic amalgam of classical and intuitionistic propositional logic

Authors: Steffen Lewitzka;

A modal logic amalgam of classical and intuitionistic propositional logic

Abstract

A famous result, conjectured by G��del in 1932 and proved by McKinsey and Tarski in 1948, says that $��$ is a theorem of intuitionistic propositional logic IPC iff its G��del-translation $��'$ is a theorem of modal logic S4. In this paper, we extend an intuitionistic version of modal logic S1+SP, introduced in our previous paper (S. Lewitzka, Algebraic semantics for a modal logic close to S1, J. Logic and Comp., doi:10.1093/logcom/exu067) to a classical modal logic L and prove the following: a propositional formula $��$ is a theorem of IPC iff $\square��$ is a theorem of L (actually, we show: $��\vdash_{IPC}��$ iff $\square��\vdash_L\square��$, for propositional $��,��$). Thus, the map $��\mapsto\square��$ is an embedding of IPC into L, i.e. L contains a copy of IPC. Moreover, L is a conservative extension of classical propositional logic CPC. In this sense, L is an amalgam of CPC and IPC. We show that L is sound and complete w.r.t. a class of special Heyting algebras with a (non-normal) modal operator.

18 pages

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Logic in Computer Science, FOS: Mathematics, Mathematics - Logic, Logic (math.LO), Logic in Computer Science (cs.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Average
Green
bronze