
arXiv: 2203.04019
Abstract We prove that a logarithmic foliation corresponding to a generic line arrangement of $d+1 \geq 3$ lines in the complex plane, with pairwise natural and co-prime residues, is a smooth point of the center set of plane foliations (vector fields) of degree $d$.
Mathematics - Complex Variables, [MATH] Mathematics [math], 510, Mathematics - Algebraic Geometry, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, [MATH]Mathematics [math], Complex Variables (math.CV), Algebraic Geometry (math.AG)
Mathematics - Complex Variables, [MATH] Mathematics [math], 510, Mathematics - Algebraic Geometry, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, [MATH]Mathematics [math], Complex Variables (math.CV), Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
