Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1992 . Peer-reviewed
Data sources: Crossref
Transactions of the American Mathematical Society
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Connected simple systems, transition matrices, and heteroclinic bifurcations

Connected simple systems, transition matrices and heteroclinic bifurcations
Authors: Christopher McCord; Christopher McCord; Konstantin Mischaikow;

Connected simple systems, transition matrices, and heteroclinic bifurcations

Abstract

Given invariant sets A A , B B , and C C , and connecting orbits A → B A \to B and B → C B \to C , we state very general conditions under which they bifurcate to produce an A → C A \to C connecting orbit. In particular, our theorem is applicable in settings for which one has an admissible semiflow on an isolating neighborhood of the invariant sets and the connecting orbits, and for which the Conley index of the invariant sets is the same as that of a hyperbolic critical point. Our proof depends on the connected simple system associated with the Conley index for isolated invariant sets. Furthermore, we show how this change in connected simple systems can be associated with transition matrices, and hence, connection matrices. This leads to some simple examples in which the nonuniqueness of the connection matrix can be explained by changes in the connected simple system.

Related Organizations
Keywords

Bifurcation theory for ordinary differential equations, heteroclinic orbits, Local and nonlocal bifurcation theory for dynamical systems, global bifurcations, topological techniques, Homoclinic and heteroclinic solutions to ordinary differential equations, dynamical systems, Conley index

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Average
bronze
Beta
sdg_colorsSDGs:
Related to Research communities