<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characteristic principal bundles are the duals of commutative twisted group algebras. A principal bundle with locally compact second countable (Abelian) group and base space is characteristic iff it supports a continuous eigenfunction for almost every character measurably in the characters, also iff it is the quotient by Z of a principal E-bundle for every E in Ext ( G , Z ) {\operatorname {Ext}}(G,Z) and a measurability condition holds. If a bundle is locally trivial, n.a.s.c. for it to be such a quotient are given in terms of the local transformations and Čech cohomology of the base space. Although characteristic G-bundles need not be locally trivial, the class of characteristic G-bundles is a homotopy invariant of the base space. The isomorphism classes of commutative twisted group algebras over G with values in a given commutative C ∗ {C^\ast } -algebra A are classified by the extensions of G by the integer first Čech cohomology group of the maximal ideal space of A.
Fiber bundles in algebraic topology, Character groups and dual objects
Fiber bundles in algebraic topology, Character groups and dual objects
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |