Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2000 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Inverse Problems
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inverse problems as statistics

Inverse problems as statistics.
Authors: Steven N. Evans; Philip B. Stark;

Inverse problems as statistics

Abstract

Summary: What mathematicians, scientists, engineers and statisticians mean by `inverse problem' differs. For a statistician, an inverse problem is an inference or estimation problem. The data are finite in number and contain errors, as they do in classical estimation or inference problems, and the unknown typically is infinite-dimensional, as it is in nonparametric regression. The additional complication in an inverse problem is that the data are only indirectly related to the unknown. Canonical abstract formulations of statistical estimation problems subsume this complication by allowing probability distributions to be indexed in more-or-less arbitrary ways by parameters, which can be infinite-dimensional. Standard statistical concepts, questions and considerations such as bias, variance, mean-squared error, identifiability, consistency, efficiency and various forms of optimality apply to inverse problems. This paper discusses inverse problems as statistical estimation and inference problems, and points to the literature for a variety of techniques and results. It shows how statistical measures of performance apply to techniques used in practical inverse problems, such as regularization, maximum penalized likelihood, Bayes estimation and the Backus-Gilbert method [see \textit{G. E. Backus} and \textit{F. Gilbert}, Geophys. J. R. Astron. Soc. 16, 169--205 (1968; Zbl 0177.54102)]. The paper generalizes results of Backus and Gilbert characterizing parameters in inverse problems that can be estimated with finite bias. It also establishes general conditions under which parameters in inverse problems can be estimated consistently.

Related Organizations
Keywords

Banach spaces, Statistical decision theory, forward problem, Foundations and philosophical topics in statistics, Rao-Blackwell theorem, Nonparametric inference, Applications of functional analysis in probability theory and statistics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!