
We consider the existence and stability of heteroclinic cycles arising by local bifurcation in dynamical systems with wreath product symmetry = Z 2 G, where Z 2 acts by - 1 on R and G is a transitive subgroup of the permutation group S N (thus G has degree N). The group acts absolutely irreducibly on R N . We consider primary (codimension one) bifurcations from an equilibrium to heteroclinic cycles as real eigenvalues pass through zero. We relate the possibility of such cycles to the existence of non-gradient equivariant vector fields of cubic order. Using Hilbert series and the software package MAGMA we show that apart from the cyclic groups G (previously studied by other authors) only five groups G of degree h 7 are candidates for the existence of heteroclinic cycles. We establish the existence of certain types of heteroclinic cycle in these cases by making use of the concept of a subcycle. We also discusss edge cycles, and a generalization of heteroclinic cycles which we call a heteroclinic web. We app...
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
