
The usual projection methods for solving convex feasibility problem (CFP) may lead to slow convergence for some starting points due to the ‘tunnelling effect’, which is connected with the monotone behaviour of the sequence and the exact orthogonal projection used in algorithms. To overcome the effect, in this article, we apply the non-monotonous technique to the subgradient projection algorithm, instead of the exact orthogonal projection algorithm, to construct a non-monotonous parallel subgradient projection algorithm for solving CFP. Under some mild conditions, the convergence is shown. Preliminary numerical experiments also show that the proposed algorithm converges faster than that of the monotonous algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
