Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Functional Plant Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

C4 rice: a challenge for plant phenomics

Authors: Furbank, Robert Thomas; von Caemmerer, Susanne; Sheehy, John; Edwards, Gerald;

C4 rice: a challenge for plant phenomics

Abstract

There is now strong evidence that yield potential in rice (Oryza sativa L.) is becoming limited by ‘source’ capacity, i.e. photosynthetic capacity or efficiency, and hence the ability to fill the large number of grain ‘sinks’ produced in modern varieties. One solution to this problem is to introduce a more efficient, higher capacity photosynthetic mechanism to rice, the C4 pathway. A major challenge is identifying and engineering the genes necessary to install C4 photosynthesis in rice. Recently, an international research consortium was established to achieve this aim. Central to the aims of this project is phenotyping large populations of rice and sorghum (Sorghum bicolor L.) mutants for ‘C4-ness’ to identify C3 plants that have acquired C4 characteristics or revertant C4 plants that have lost them. This paper describes a variety of plant phenomics approaches to identify these plants and the genes responsible, based on our detailed physiological knowledge of C4 photosynthesis. Strategies to asses the physiological effects of the installation of components of the C4 pathway in rice are also presented.

Country
Australia
Keywords

Chlorophyll, 580, Porphyrins, carbon isotope, Compensation points, Carbon isotope discrimination, CO2 compensation point, Kranz anatomy, Keywords: Carbon isotope discrimination, Fluorescence, crop improvement, Genes, Isotopes, CO 2 compensation point, Photosynthesis, Chlorophyll fluorescence, Photosynthetic efficiency, C4 plant

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
Green