Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian Journal o...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

Genetic analysis of coleoptile length and diameter in wheat

Authors: G. J. Rebetzke; R. A. Richards; X. R. R. Sirault; A. D. Morrison;

Genetic analysis of coleoptile length and diameter in wheat

Abstract

Lack of moisture near the soil surface commonly delays sowing, reducing grain yields of Australian wheat (Triticum aestivum) crops. Deep sowing would allow growers to make use of soil moisture lying below the drying topsoil, but the short coleoptiles of semidwarf wheats reduce emergence when sowing at depths greater than 5 cm. Selection of longer, thicker coleoptiles would help in improving emergence in hard or crusted soils, or when deep sowing, yet little is known of genetic control of coleoptile size in wheat. A diallel mating design was generated from crosses between 12 Australian and overseas wheats, and assessed for coleoptile size at different temperatures (11, 15, 19, and 23°C). Repeatabilities for coleoptile diameter and length were moderate to high on an entry-mean basis (R2 = 0.48 and 0.77, respectively), reflecting large genotype and small genotype × temperature interaction variances. Genotypic variation among parents translated into large and significant (P < 0.01) differences among F1 progeny (94–142 mm and 1.56–1.84 mm for length and diameter, respectively). General (GCA) and specific combining ability (SCA), and reciprocal effects were significant (P < 0.01) for length and diameter. Baker’s GCA/SCA ratio was high (0.62–0.77) for coleoptile length but intermediate for diameter (0.38–0.64), indicating strong additive genetic control for length. Further, GCA effects and parental means were strongly correlated (r = 0.81–0.91, P < 0.01) indicating parent length to be a useful predictor of progeny performance. Coleoptile lengths for progeny derived from Rht8, Rht9, and Rht12 dwarfing gene donors were generally shorter (c. –7 to –13%) but were still an average 47% longer than coleoptiles of Rht-B1b and Rht-D1b controls. The genetic correlation for coleoptile length and diameter was small (rg = –0.25 ± 0.15n.s.) suggesting that the two traits are genetically independent. Development of wheats with longer, thicker coleoptiles should be readily achieved in selection among partially inbred families from crosses targetting improved establishment.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!