
doi: 10.1063/5.0088856
pmid: 35778112
Networks of interacting nodes connected by edges arise in almost every branch of scientific inquiry. The connectivity structure of the network can force the existence of invariant subspaces, which would not arise in generic dynamical systems. These invariant subspaces can result in the appearance of robust heteroclinic cycles, which would otherwise be structurally unstable. Typically, the dynamics near a stable heteroclinic cycle is non-ergodic: mean residence times near the fixed points in the cycle are undefined, and there is a persistent slowing down. In this paper, we examine ring graphs with nearest-neighbor or nearest-m-neighbor coupling and show that there exist classes of heteroclinic cycles in the phase space of the dynamics. We show that there is always at least one heteroclinic cycle that can be asymptotically stable, and, thus, the attracting dynamics of the network are expected to be non-ergodic. We conjecture that much of this behavior persists in less structured networks and as such, non-ergodic behavior is somehow typical.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
