<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::740e60e2ee1f816ef65d3e61432cd40a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::740e60e2ee1f816ef65d3e61432cd40a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::126de08563f655cbe3313fddf6e36682&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::126de08563f655cbe3313fddf6e36682&type=result"></script>');
-->
</script>
Despite over a century's study, the mechanisms of cardiac arrhythmias are poorly understood. Even modern experimental methods do not provide sufficient temporal and spacial resolution to trace down fine details of fibrillation development in samples of cardiac tissue, not to mention the heart in vivo. Advances in human genetics provide information on the impact of certain genes on cellular activity, but do not explain the resultant mechanisms by which fibrillation arises. Thus, for some genetic cardiac diseases, the first presenting symptom is death. Combination of mathematical modelling and the latest realistic computer simulations of electrical activity in the heart have much advanced our understanding of heart fibrillation and sudden cardiac death, and the impact of in-silico modelling, or indeed in-silico "testing", is expected to increase significantly as we approach the ultimate goal of the whole-heart modelling. Biophysically and anatomically realistic simulation of cardiac action potential propagation through the heart is computationally expensive due to the huge number of equations per cell and the vast spacial and temporal scales required. Therefore any insights that can be obtained through generic mathematical model analysis is very valuable, as it tends to reveal generic mechanisms, unlike direct computer simulations, which provide answers valid only for a specific choice of parameters and initial conditions and depend on the computer model accuracy. Note that despite of the decades of steady progress, computer models still have qualitative rather than quantitative predictive power on the macroscopic scale, e.g. where whole heart or a whole chamber of the heart are concerned. Our recent progress in asymptotic analysis of dissipative vortices dynamics has revealed a new phenomenon of the vortices interaction with sharp variations of thickness in excitable layer. Such interaction of cardiac re-entry with sharp anatomical features, as e.g. pectinate muscles and terminal crest in atria, can cause considerable displacement of established localisation of re-entry compared to where it was first localised. The asymptotic theory prediction of the vortices drift caused by interaction with sharp thickness variations in a layer has been confirmed in experiments with Belousov-Zhabotinski reaction, and verified in computer simulations with a variety of cell excitation models, from extremely simplified "conceptual" models to realistic ionic kinetics models, and for tissue geometries from artificial idealised geometries to a realistic anatomy of human atria. A better underestanding of this phenomenon may have significant implications in clinics, say for chosing an individual ablation strategy for treatment of atrial fibrillation. Validation of the identified new phenomenon has so far been done only on a single model of human atrium, and understanding of to what extent the effect is universal requires extensive testing on a wide variety of cardiac MRI anatomy models, before experimental testing and clinical implications can be considered. The aim of the proposed project is to visit the Auckland Bioengineering Institute (ABI), New Zealand, which is an international leader in the heart and cardiovascular system research that combines instrumentation development, experimental measurements and modelling. ABI cardiovascular magnetic resonance (CMR) imaging group obtains most detail models of heart geometry and tissue microstructure. This visit will forge a closer collaboration than it is feasible from a distance, and provide a possibility of exhaustive testing of the new phenomenon in the most up-to-date anatomically and biophysically realistic models. An extra benefit will be provided by the applicant's participation in Cardiac Physiome Workshop (23 August 2016, Seoul, Korea), which will be a unique opportunity to discuss our recent findings and future directions of research with the world leaders in the field.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::656b605a03751ab5cb8e111da4477140&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::656b605a03751ab5cb8e111da4477140&type=result"></script>');
-->
</script>
It is a paradoxical situation that with Japan being the third modern economy and Japanese, the main Japonic language, being the 10th in the world in terms of native speakers and the most widely studied Asian language, the Japonic language family still lacks an etymological dictionary. The present research project will rectify this situation. The benefits of an etymological dictionary of Japonic are obvious: not only it will be of a great use to the specialists working on pre-modern Japan and Ryukyuan islands in various disciplines; it will have its impact on modern studies, especially on linguistic identities in East Asia. And offer a new reading of regional linguistic identities The Etymological Dictionary of the Japonic languages has never been compiled, and the time for the realization of such a project is ripe, as it would have been impossible to carry on 30 or 40 years ago, since many important resources available now did not yet exist then such as numerous dictionaries and descriptions of dialects and historical stages of the language development. The same is true regarding the editions of many textual sources and compilation of their indexes. One very important difference with the previous era is also the fact that nowadays many sources are available electronically, which greatly facilitates the search and management of information. This project is highly innovative because it provides a presentation in context based on the extensive use of the IT technology, as compared to the previous research on Japonic etymology which was essentially word-list-oriented. In contrast with the current practice, where only word entries with their translations were provided (and often without any reference to the source), thanks to internet link to database, and cross-referenced entries, the electronic etymological dictionary will present the words in their textual historical and cultural context.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5386d48bcdf9270a3c1fa6f5c5fda1e3&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5386d48bcdf9270a3c1fa6f5c5fda1e3&type=result"></script>');
-->
</script>
Heart failure is a lethal syndrome representing a common 'final pathway' for sufferers of a multitude of cardiac and respiratory diseases. 1 in 5 people will suffer from heart failure during their life time and once diagnosed ~40% of patients die within one year. Heart failure is caused by the heart's inability to perfuse the organs of the body with blood. The energy starvation hypothesis is a new model of heart failure and proposes that the reduced supply of energy is a fundamental cause of heart failure. The energy starvation hypothesis is the result of genetic studies and new experimental methodologies and provides a unifying mechanism to explain the development of cardiac contractile failure, yet the significance of compromised energy supply is debated. This project will investigate the importance of the energy starvation hypothesis by analysing the extent to which decreases in energy supply during heart failure compromise heart function. The cardiac energy supply chain (CESC) spans from the organ to the sub cellular scale. Energy supply decreases during heart failure due to the compromise of independent compounding links of the CESC at the organ, tissue and cellular scale. At the organ scale, blood flow through the arteries supplying blood to the heart decreases. At the tissue scale, oxygen and metabolite flux from the capillaries to the cells is reduced. At the cellular scale, the conversion of oxygen and metabolites to high energy molecules and the transport of these to the points of utilization are inhibited. I propose to investigate the energy supply to heart cells in the failing heart by developing a series of coupled models representing the cellular scale (metabolism, electrical activity, biochemical, contraction), tissue scale (movement of oxygen and metabolites, capillary circulation) and organ scale (blood supply to the heart, mechanics, electrical activation) components of the CESC. Changing model parameters and geometries will then allow the CESC during heart failure to be simulated. The model will be systematically validated against experimental results at each stage in model development. The final integrated multi-scale model will be used to test the energy starvation hypothesis by quantifying how the individual and integrated changes to the CESC during heart failure affect whole heart function.In order to build these models, we will use sophisticated image processing techniques to build an accurate 3D geometrical representation of the heart, arteries supplying blood to the heart and capillary network from high resolution datasets. Advanced numerical methods will be used to formulate mathematical equations for the transduction of energy within the heart. Cutting edge experimental procedures will provide key information on changes in cellular, tissue and organ structure and function during heart failure. Such combinations of mathematical modelling techniques and experimental investigations are vital for elucidating the mechanisms underlying the causes and progression of heart failure and may ultimately lead to improved treatment and prevention.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3c266e2a62d466bc5f7e505d54e54fe9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3c266e2a62d466bc5f7e505d54e54fe9&type=result"></script>');
-->
</script>