
doi: 10.1063/1.2927252
handle: 10397/541
The use of lead-free materials has recently become a very important issue in environmental protection of the earth. Two groups of lead-free ceramics, (K0.5,Na0.5)NbO3 based (KNN) and Bi1−y(NaxK1−x)yTiO3 based (BNKT), were studied for their thermal, dielectric, and pyroelectric properties as candidates for pyroelectric sensor applications. The BNKT-based ceramic, [Bi0.5(Na0.94K0.05Li0.016)0.5]0.95Ba0.05TiO3 (BNKLBT), shows excellent pyroelectric properties when compared with KNN-based ceramic and lead zirconate titanate. Its properties were measured as follows: pyroelectric coefficient p=360μC∕m2K, pyroelectric figure of merit of current, voltage, and detectivity Fi=221pm∕V, Fv=0.030m2∕C, and Fd=14.8μPa−1∕2. With these outstanding pyroelectric properties, the BNKLBT ceramic can be a promising material for pyroelectric sensor applications. The BNKLBT ceramic with different thicknesses (i.e., 0.3, 0.5, and 0.7mm) have been used as the sensing element for fabricating infrared detectors. The current responsivity of the sensors was evaluated as functions of frequency.
Ceramics, Pyroelectric detectors, Pyroelectricity, 330, Potassium compounds, Bismuth compounds, Sodium compounds
Ceramics, Pyroelectric detectors, Pyroelectricity, 330, Potassium compounds, Bismuth compounds, Sodium compounds
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 145 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
