Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rotation–libration and rotor–rotor coupling in 4-methylpyridine

Authors: M A, Neumann; M, Plazanet; M R, Johnson; H P, Trommsdorff;

Rotation–libration and rotor–rotor coupling in 4-methylpyridine

Abstract

The low temperature rotational dynamics of methyl groups in 4-methylpyridine is analyzed in terms of a model potential including rotation–libration and rotor–rotor coupling. The parameters of the model potential are adjusted by comparison of calculated with published and newly recorded inelastic neutron scattering spectra. Initial evaluations of the potential parameters of the model are obtained from molecular mechanics calculations. Experimental spectra are calculated from these potentials by numerical solution of Schrödinger’s equation for clusters of coupled rotors embedded in a bigger ensemble of rotors treated in the mean field approximation. Adjustment of the potential parameters leads to excellent agreement with the experimental spectra of protonated 4-methylpyridine, measured at well-defined spin temperatures. At higher levels of deuteration, agreement with experiment is qualitative, only. The observed deviations are attributed to the increasing frustration of the system of coupled methyl groups and mutual localization, effects leading to a phase transition around 5.5 K in isotopic mixtures, as shown in diffraction experiments.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!