
We construct a monadic second-order sentence that characterizes the ternary relations that are the betweenness relations of finite or infinite partial orders. We prove that no first-order sentence can do that. We characterize the partial orders that can be reconstructed from their betweenness relations. We propose a polynomial time algorithm that tests if a finite relation is the betweenness of a partial order.
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Logic in Computer Science (cs.LO)
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Logic in Computer Science (cs.LO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
