Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Nature
Article . 2014
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A supermassive black hole in an ultra-compact dwarf galaxy

Authors: Nadine Neumayer; Nadine Neumayer; Remco C. E. van den Bosch; Jonelle L. Walsh; Steffen Mieske; Igor Chilingarian; Igor Chilingarian; +11 Authors

A supermassive black hole in an ultra-compact dwarf galaxy

Abstract

Ultracompact dwarf galaxies (UCDs) are among the densest stellar systems in the universe. These systems have masses up to 200 million solar masses, but half light radii of just 3-50 parsecs. Dynamical mass estimates show that many UCDs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates are due to the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we present the detection of a supermassive black hole in a massive UCD. Adaptive optics kinematic data of M60-UCD1 show a central velocity dispersion peak above 100 km/s and modest rotation. Dynamical modeling of these data reveals the presence of a supermassive black hole with mass of 21 million solar masses. This is 15% of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying many other UCDs may also host supermassive black holes. This suggests a substantial population of previously unnoticed supermassive black holes.

Author's version of paper appearing in 18 September issue of Nature, available at http://dx.doi.org/10.1038/nature13762 ; 9 pages, 9 figures including methods & supplementary information sections

Keywords

Host Galaxies, FOS: Physical sciences, Multi Gaussian Expansion, Astrophysics - Astrophysics of Galaxies, 520, Initial Mass Function, 1000 General, Astrophysics of Galaxies (astro-ph.GA), Star clusters, Stellar Systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    224
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
224
Top 1%
Top 10%
Top 1%
Green
bronze