Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Letters in Mathematical Physics
Article . 1997 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 1996
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differentials of Higher Order in Noncommutative Differential Geometry

Differentials of higher order in noncommutative differential geometry
Authors: Robert Coquereaux;

Differentials of Higher Order in Noncommutative Differential Geometry

Abstract

In differential geometry, the notation d^n f along with the corresponding formalism has fallen into disuse since the birth of exterior calculus. However, differentials of higher order are useful objects that can be interpreted in terms of functions on iterated tangent bundles (or in terms of jets). We generalize this notion to the case of non commutative differential geometry. For an arbitrary associative algebra A, one already knows how to define the differential algebra Omega(A) of universal differential forms over A. We define Leibniz forms of order n (these are not forms of degree n, ie they are not elements of Omega^n A) as particular elements of what we call the ``iterated frame algebra'' of order n, F_n A, which is itself defined as the 2^n tensor power of the algebra A. We give a system of generators for this iterated frame algebra and identify the A-module of forms of order n as a particular vector subspace included in the space of universal one-forms built over the iterated frame algebra of order n-1. We study the algebraic structure of these objects, recover the case of the commutative differential calculus of order n (Leibniz differentials) and give a few examples.

17 pages, LaTeX

Keywords

jets, High Energy Physics - Theory, Differential forms in global analysis, iterated bundles, FOS: Physical sciences, Mathematical Physics (math-ph), Noncommutative topology, High Energy Physics - Theory (hep-th), differential calculus, Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), Noncommutative differential geometry, noncommutative geometry, Mathematical Physics, Leibniz

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Green