Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrobiologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrobiologia
Article . 1999 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Larval settlement of polychaetes

Authors: Qian, Peiyuan;

Larval settlement of polychaetes

Abstract

Many benthic marine invertebrate species have a dispersive larval stage in their life histories. Larvae typically spend hours, weeks, or months developing in plankton before they become competent to settle and metamorphose. Recruitment to benthic populations depends on the numbers of competent larvae transported to sites and/or the interaction between larvae and the surface of substratum. While there is considerable evidence that on large spatial scales, the number of competent larvae transported to sites is determined primarily by hydrodynamics, success of larval settlement on small spatial scales is mediated by biotic and abiotic characteristics of substratum. Larvae of many marine polychaetes require specific cues to settle and metamorphose. Cues can originate from conspecific or congeneric individuals, microbial films, sympatric species, food items, or habitat. Larval settlement in an individual species can be controlled by a single cue or a mixture of cues. Larval settlement of multiple species can be mediated by a common cue or a mixture of cues. Although a variety of chemicals, including proteins, free fatty acids, polysaccharides, inorganic ions, and neurotransmitters, have been suggested as inducing larval settlement of marine polychaetes, few natural cues have been isolated and structurally identified.

Related Organizations
Keywords

Juveniles, Metamorphosis, Chemical settlement cues, Larval settlement, Larval settlement inducers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!