Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Triboelectric Nanogenerators for Blue Energy Harvesting

Authors: Sang-Woo Kim; Usman Khan;

Triboelectric Nanogenerators for Blue Energy Harvesting

Abstract

Blue energy in the form of ocean waves offers an enormous energy resource. However, it has yet to be fully exploited in order to make it available for the use of mankind. Blue energy harvesting is a challenging task as the kinetic energy from ocean waves is irregular in amplitude and is at low frequencies. Though electromagnetic generators (EMGs) are well-known for harvesting mechanical kinetic energies, they have a crucial limitation for blue energy conversion. Indeed, the output voltage of EMGs can be impractically low at the low frequencies of ocean waves. In contrast, triboelectric nanogenerators (TENGs) are highly suitable for blue energy harvesting as they can effectively harvest mechanical energies from low frequencies (<1 Hz) to relatively high frequencies (∼kHz) and are also low-cost, lightweight, and easy to fabricate. Several important steps have been taken by Wang's group to develop TENG technology for blue energy harvesting. In this Perspective, we describe some of the recent progress and also address concerns related to durable packaging of TENGs in consideration of harsh marine environments and power management for an efficient power transfer and distribution for commercial applications.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    240
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
240
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!