
AbstractStable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-stable and S4-stable logics by means of stable formulas and discuss the connection between S4-stable logics and stable superintuitionistic logics. We conclude the article with many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of stable rules and formulas.
004
004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
