
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractOne of the most fundamental properties of a proof system is analyticity, expressing the fact that a proof of a given formula F only uses subformulas of F. In sequent calculus, this property is usually proved by showing that the $\mathsf{cut}$ rule is admissible, i.e., the introduction of the auxiliary lemma H in the reasoning “if H follows from G and F follows from H, then F follows from G” can be eliminated. The proof of cut admissibility is usually a tedious, error-prone process through several proof transformations, thus requiring the assistance of (semi-)automatic procedures. In a previous work by Miller and Pimentel, linear logic ( $\mathsf{LL}$ ) was used as a logical framework for establishing sufficient conditions for cut admissibility of object logical systems (OL). The OL’s inference rules are specified as an $\mathsf{LL}$ theory and an easy-to-verify criterion sufficed to establish the cut-admissibility theorem for the OL at hand. However, there are many logical systems that cannot be adequately encoded in $\mathsf{LL}$ , the most symptomatic cases being sequent systems for modal logics. In this paper, we use a linear-nested sequent ( $\mathsf{LNS}$ ) presentation of $\mathsf{MMLL}$ (a variant of LL with subexponentials), and show that it is possible to establish a cut-admissibility criterion for $\mathsf{LNS}$ systems for (classical or substructural) multimodal logics. We show that the same approach is suitable for handling the $\mathsf{LNS}$ system for intuitionistic logic.
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], Linear logic, Proof-theoretic aspects of linear logic and other substructural logics, cut elimination, 004, linear logic, linear-nested systems, Cut-elimination and normal-form theorems, multimodal logics, Modal logic (including the logic of norms)
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], Linear logic, Proof-theoretic aspects of linear logic and other substructural logics, cut elimination, 004, linear logic, linear-nested systems, Cut-elimination and normal-form theorems, multimodal logics, Modal logic (including the logic of norms)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
