Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Structu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Structures in Computer Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2022
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A linear logic framework for multimodal logics

Authors: Xavier, Bruno; Olarte, Carlos; Pimentel, Elaine;

A linear logic framework for multimodal logics

Abstract

AbstractOne of the most fundamental properties of a proof system is analyticity, expressing the fact that a proof of a given formula F only uses subformulas of F. In sequent calculus, this property is usually proved by showing that the $\mathsf{cut}$ rule is admissible, i.e., the introduction of the auxiliary lemma H in the reasoning “if H follows from G and F follows from H, then F follows from G” can be eliminated. The proof of cut admissibility is usually a tedious, error-prone process through several proof transformations, thus requiring the assistance of (semi-)automatic procedures. In a previous work by Miller and Pimentel, linear logic ( $\mathsf{LL}$ ) was used as a logical framework for establishing sufficient conditions for cut admissibility of object logical systems (OL). The OL’s inference rules are specified as an $\mathsf{LL}$ theory and an easy-to-verify criterion sufficed to establish the cut-admissibility theorem for the OL at hand. However, there are many logical systems that cannot be adequately encoded in $\mathsf{LL}$ , the most symptomatic cases being sequent systems for modal logics. In this paper, we use a linear-nested sequent ( $\mathsf{LNS}$ ) presentation of $\mathsf{MMLL}$ (a variant of LL with subexponentials), and show that it is possible to establish a cut-admissibility criterion for $\mathsf{LNS}$ systems for (classical or substructural) multimodal logics. We show that the same approach is suitable for handling the $\mathsf{LNS}$ system for intuitionistic logic.

Countries
France, United Kingdom
Keywords

[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], Linear logic, Proof-theoretic aspects of linear logic and other substructural logics, cut elimination, 004, linear logic, linear-nested systems, Cut-elimination and normal-form theorems, multimodal logics, Modal logic (including the logic of norms)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid