
Let (X, d, μ) be a metric measure space and let it satisfy the so-called upper doubling condition and the geometrically doubling condition. We show that, for the maximal Calderón–Zygmund operator associated with a singular integral whose kernel satisfies the standard size condition and the Hörmander condition, its Lp(μ)-boundedness with p ∈ (1, ∞) is equivalent to its boundedness from L1(μ) into L1,∞(μ). Moreover, applying this, together with a new Cotlar-type inequality, the authors show that if the Calderón–Zygmund operator T is bounded on L2(μ), then the corresponding maximal Calderón–Zygmund operator is bounded on Lp(μ) for all p ∈ (1, ∞), and bounded from L1(μ) into L1,∞ (μ). These results essentially improve the existing results.
Mathematics - Functional Analysis, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Primary 42B20, Secondary 42B25, 43A99, Functional Analysis (math.FA)
Mathematics - Functional Analysis, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Primary 42B20, Secondary 42B25, 43A99, Functional Analysis (math.FA)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
