Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symposium - Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Symposium - International Astronomical Union
Article . 1995 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Enhanced Star Formation rates in Binary Interacting Elliptical Galaxies

Authors: Tapan K. Chatterjee;

Enhanced Star Formation rates in Binary Interacting Elliptical Galaxies

Abstract

We study the stellar orbits, as a function of the binary motion of two identical ellipticals, under initial conditions marginally sufficient for strong interaction. The stars were initially given circularly symmetric velocities. The tidal effects cause a redistribution of stellar orbits, resulting in crowding of stars in shells; the same attaining its maximum intensity slightly after a pericentric passage. As the galaxies recede, the structure disperses gradually by expanding; but is restored, intensified and forms at a shorter radial distance as the galaxies return for a subsequent approach in a shrinking orbit. We give the stellar positions, projected perpendicular to the orbital plane, shortly after the first (t≈0.5) and second (t≈6) pericentric passages in the figures; (time being given in dimensionless units corresponding to mass=l, radius=l, G=4.50). On the basis of the cooling gas inflow model, the gas will be compressed and shocked in these regions of enhanced stellar density, leading to bursts of star formation. The interval between the two successive starbursts is found to be of the same order as the trapping time needed by the galaxy to incorporate the gas ejected by stars in its cooling flow.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze