
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11583/1407356 , 11587/366034
In this paper, a method is proposed to define the geometrical contact constraints. Within this treatment one has the possibility to define locally the contact parameters for an accurate treatment of contact constraints. Local values of the geometrical variables can be determined at the integration points, hence the method permits to integrate contact constitutive laws along contact segments. The weak form for this new formulation is developed. Furthermore, also the consistent linearization is carried out. Finally a technique is proposed to reduce the large number of terms involved. In this case, an almost consistent tangent stiffness is determined.
Finite element methods applied to problems in solid mechanics, Modelling and Simulation, Contact in solid mechanics, Computer Science Applications
Finite element methods applied to problems in solid mechanics, Modelling and Simulation, Contact in solid mechanics, Computer Science Applications
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
