
The active broadband (1 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the moon, that are essential for future lunar human and science exploration. In addition, the lunar South pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the south (or north) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the big bang and into the period where the first stars formed. A detection of the 21 cm line from the moon at these frequencies would allow for the first time a clue on the distribution and evolution on mass in the early universe between the Epoch of Recombination and Epoch of Reionization (EoR). A single lunar radio antenna would also allow for studies of the effect of solar flares and Coronal Mass Ejections (CMEs) on the solar wind at distances close to earth (space weather) and would open up the study of low frequency radio events from planets such as Jupiter and Saturn, which are known to emit bright (kJy-MJy) radio emission below 30 MHz (Jester & Falcke, 2009). Finally, a single radio antenna on the lunar lander would pave the way for a future large lunar radio interferometer; not only will it demonstrate the possibilities for lunar radio science and open up the last unexplored radio regime, but it will also allow a determination of the limitations of lunar radio science by measuring the local radio background noise.
Accepted for publication in a special issue PSS - "Scientific Preparations for Lunar Exploration"
[PHYS]Physics [physics], Astronomy, FOS: Physical sciences, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), [PHYS] Physics [physics]
[PHYS]Physics [physics], Astronomy, FOS: Physical sciences, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), [PHYS] Physics [physics]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
