Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physica D Nonlinear ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica D Nonlinear Phenomena
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classical quasi-steady state reduction—A mathematical characterization

Classical quasi-steady state reduction -- a mathematical characterization
Authors: Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva;

Classical quasi-steady state reduction—A mathematical characterization

Abstract

We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar heuristic: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. These QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A closer investigation of QSS parameter values and the associated systems shows the existence of certain invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.

49 pages. Revision, with presentation modified

Related Organizations
Keywords

dimension reduction, solvability by radicals, 92C45, 34E15, 80A30, 13P10, Dynamical Systems (math.DS), Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, reaction equations, singular perturbations, Mathematics - Dynamical Systems, Classical flows, reactions, etc. in chemistry, Theoretical approximation of solutions to ordinary differential equations, Singular perturbations of ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Green
bronze