Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ocean Engineering
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Condition monitoring of mooring systems for Floating Offshore Wind Turbines using Convolutional Neural Network framework coupled with Autoregressive coefficients

Authors: Smriti Sharma; Vincenzo Nava;

Condition monitoring of mooring systems for Floating Offshore Wind Turbines using Convolutional Neural Network framework coupled with Autoregressive coefficients

Abstract

This research presents a novel approach proposed for the monitoring of mooring systems in Floating Offshore Wind Turbines (FOWTs), employing a combination of Convolutional Neural Networks (CNNs) and Auto-Regressive (AR) models. CNN finds broad application in monitoring intricate structures, as they adeptly handle noisy response data without necessitating profound domain expertise. The precision of CNNs relies on the extraction of meaningful features from input data, necessitating meticulous data curation and labeling for optimal computational efficiency and accurate estimation. Emphasis is placed on the preference for feature-rich small datasets over voluminous yet sparse datasets, aiming to enable CNNs to discern crucial patterns more effectively and mitigate issues such as overfitting and extensive preprocessing. The novelty of the proposed approach lies in the integration of AR models, which serve to compress data and enhance damage-sensitive characteristics in the input for CNNs. This integration involves deploying regression models fitted to historical responses, parameterized with AR coefficients sensitive to damage, and further classifying severity using CNNs. The sequential nature of this approach addresses challenges such as vanishing/exploding gradients, particularly for extended historical data, while also attenuating the impact of noise and irrelevant information through data compression. The study explores the effectiveness of the coupled AR-CNN method in monitoring FOWT mooring lines, with a specific focus on two levels of damage identification: detection with classification and damage severity across diverse damage and operational scenarios. The modified methodology exhibits superior outcomes by conducting a performance analysis against traditional CNNs and other machine-learning methods, highlighting the potential of the AR-CNN strategy to improve the precision of FOWT mooring line condition monitoring. These findings underscore the AR-CNN strategy's potential to enhance the accuracy of FOWT mooring line condition monitoring.

Country
Italy
Keywords

Auto regressive model (AR), Structural health monitoring, Auto regressive model (AR); Convolutional neural network (CNN); Damage diagnosis; Mooring lines; Offshore structures; Structural health monitoring; Wind turbines, Convolutional neural network (CNN), Wind turbines, Mooring lines, Offshore structures, Damage diagnosis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green