
The self-adjointness of $H+V$ is studied, where $H=-i��\cdot\nabla +m��$ is the free Dirac operator in $\R^3$ and $V$ is a measure-valued potential. The potentials $V$ under consideration are given by singular measures with respect to the Lebesgue measure, with special attention to surface measures of bounded regular domains. The existence of non-trivial eigenfunctions with zero eigenvalue naturally appears in our approach, which is based on well known estimates for the trace operator defined on classical Sobolev spaces and some algebraic identities of the Cauchy operator associated to $H$.
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
