
In this paper, we consider an approximation method, and a novel general analysis, for second-order elliptic differential equations with heterogeneous multiscale coefficients. We obtain convergence of the Generalized Multi-scale Finite Element Method (GMsFEM) method that uses local eigenvectors in its construction. The analysis presented here can be extended, without great difficulty, to more sophisticated GMsFEMs. For concreteness, the obtained error estimates generalize and simplify the convergence analysis of [J. Comput. Phys. 230 (2011), 937-955]. The GMsFEM method construct basis functions that are obtained by multiplication of (approximation of) local eigenvectors by partition of unity functions. Only important eigenvectors are used in the construction. The error estimates are general and are written in terms of the eigenvalues of the eigenvectors not used in the construction. The error analysis involve local and global norms that measure the decay of the expansion of the solution in terms of local eigenvectors. Numerical experiments are carried out to verify the feasibility of the approach with respect to the convergence and stability properties of the analysis in view of the good scientific computing practice.
Second-order elliptic systems, eigenvalue decay, high-contrast multiscale problems, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Stability and convergence of numerical methods for boundary value problems involving PDEs, multiscale finite element methods
Second-order elliptic systems, eigenvalue decay, high-contrast multiscale problems, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Stability and convergence of numerical methods for boundary value problems involving PDEs, multiscale finite element methods
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
