Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Algorithm...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algorithms
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.1007/3-540-...
Part of book or chapter of book . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing shortest paths with uncertainty

Authors: Liadan O'Callaghan; Christopher Olston; Rajeev Motwani; Tomás Feder; Rina Panigrahy;

Computing shortest paths with uncertainty

Abstract

We consider the problem of estimating the length of the shortest path from a vertex s to a vertex t in a DAG whose edge lengths are known only approximately but can be determined exactly at a cost. Initially, for each edge e, the length of e is known only to lie within an interval [l"e,h"e]; the estimation algorithm can pay w"e to find the exact length of e. We study the problem of finding the cheapest set of edges such that, if exactly these edges are queried, the length of the shortest s-t path will be known, within an additive @k>=0, an input parameter. An actual s-t path, whose true length exceeds that of the shortest s-t path by at most @k, will be obtained as well. The problem of finding a cheap set of edge queries is in neither NP nor co-NP unless NP = co-NP. We give positive and negative results for two special cases and for the general case, which we show is in @S"2.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!