
Abstract Supervaluationism and fuzzy logic are two complementary formalisms for reasoning with vague information. We study a framework for combining both approaches. Supervaluationism is modeled by a space of precisifications, essentially a Kripke structure. We equip this space with a probability measure to extract the truth value of each propositional variable by measuring the set of precisifications in which it is true. Complex formulas are evaluated by the truth functions given by a continuous t-norm and its residuum. We also add a universal modality to this logic. Besides unrestricted probability measures, we motivate two other natural classes: strictly positive and uniform probability measures. The goal of this paper is to analyze how the choice of a probability measure and a t-norm affects the set of valid formulas in our hybrid logic.
102031 Theoretische Informatik, Non-classical logics, t-norm based logics, Mathematical fuzzy logic, Vagueness, 102031 Theoretical computer science, Supervaluationism
102031 Theoretische Informatik, Non-classical logics, t-norm based logics, Mathematical fuzzy logic, Vagueness, 102031 Theoretical computer science, Supervaluationism
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
