Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fish & Shellfish Immunology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus

Authors: Mikolaj Adamek; Alexander Rebl; Marek Matras; Christian Lodder; Sahar Abd El Rahman; Magdalena Stachnik; Krzysztof Rakus; +9 Authors

Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus

Abstract

The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.

Keywords

Innate immunity, disease resistance, DNA Viruses, Cichlids, Fish Diseases, RNA Virus Infections, tilapia lake virus, mx1, Animals, Humans, RNA Viruses, Nile tilapia, Tilapia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green