Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut National de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2020
License: CC BY NC
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2020
License: CC BY NC
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Research
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Aminomethylphosphonic acid alters amphibian embryonic development at environmental concentrations

Authors: Cheron, Marion; Brischoux, Francois;

Aminomethylphosphonic acid alters amphibian embryonic development at environmental concentrations

Abstract

Despite intense societal and scientific debates regarding glyphosate toxicity, it remains the most widely used herbicide. The primary metabolite of glyphosate, AMPA (aminomethylphosphonic acid), is the main contaminant detected in surface waters worldwide, both because of the extensive use of glyphosate and because of other widespread sources of AMPA (i.e., industrial detergents). Studies on potential effects of glyphosate using environmentally relevant concentrations of AMPA on non-target wildlife species are lacking. We experimentally tested the effects of AMPA on embryonic development in a common European toad at concentrations spanning the range found in natural water bodies (from 0.07 to 3.57 μg l-1). Our experimental concentrations of AMPA were 100-6000 times lower than official Predicted-No-Effect-Concentrations. We found that these low-level concentrations of AMPA decreased embryonic survival, increased development duration and influenced hatchling morphology. Response patterns were more complex than classical linear concentration-response relationships, as concentration responses were nonmonotonic, with greater effects at low-concentrations of AMPA than at high levels. Based on our results we recommend that investigators focus not only on effects of "parent compounds," but also their metabolites at environmentally relevant concentrations in order to comprehensively assess impacts of anthropogenic contaminants on the environment.

Country
France
Keywords

[SDE] Environmental Sciences, Glyphosate, Herbicides, Organophosphonates, Embryonic Development, Tetrazoles, Isoxazoles, 333, Sublethal effects, Aminomethylphosphonic acid, Amphibians, Herbicide toxicity, Contamination, Bufo spinosus, [SDE]Environmental Sciences, Animals, Non-monotonic dose response, Environmental Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green