
We study the uniqueness of optimal solutions to extremal graph theory problems. Our main result is a counterexample to the following conjecture of Lov´asz, which is often referred to as saying that “every extremal graph theory problem has a finitely forcible optimum”: every finite feasible set of subgraph density constraints can be extended further by a finite set of density constraints such that the resulting set is satisfied by an asymptotically unique graph.
QA
QA
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
