
Abstract A finite element method model has been elaborated aiming at a deeper insight into the influence of microstructure on micro-galvanic corrosion of Al alloys. The model considers a dynamic corroding surface and takes into account kinetic data from local electrochemical reactions, transport of O 2 and ionic species (e.g., Al 3+ , H + , Cl − ), homogeneous reactions in the electrolyte, deposition of reaction products and its influence on both anodic and cathodic reactions. As a first step, an Al matrix with a micrometer-sized cathodic intermetallic particle exposed in 0.1 M NaCl has been considered. The simulation predicts the dynamic changes of the corroding surface, and the flow and distribution of ionic species and of O 2 in space and time. The calculated pH of the electrolyte inside and nearby the occluded corroding volume suggests the formation of insoluble Al(OH) 3 on both the cathodic and anodic areas. This results in blocking effects of anodic and cathodic reactions and in eventual termination of the micro-galvanic corrosion. The predicted deposition of corrosion product is in good agreement with in-situ atomic force microscopy measurements.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 94 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
