Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2016
Data sources: HAL AMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Improving the Volumetric Energy Density of Supercapacitors

Authors: Goubard-Bretesché, Nicolas; Crosnier, Olivier; Favier, Frédéric; Brousse, Thierry;

Improving the Volumetric Energy Density of Supercapacitors

Abstract

Abstract Due to the low double-layer capacitance of activated carbons ( −2 ) and to their low density related to their large micro/meso porosity, the volumetric energy density of commercial supercapacitors remains low. Therefore, the use of pseudocapacitive oxides or nitrides as electrode materials can drastically improve the volumetric performance. However, there is currently a lack of reliable tools to extrapolate the performance of a 1 cm 2 electrode to a real life cell of several thousand farads. In this paper, we provide a calculation tool to extrapolate the cell capacitance and the energy density both from a gravimetric and volumetric point of view in a 399 cm 3 device. The calculation datasheet indicates that in order to improve the volumetric energy density of supercapacitors, it is crucial to lower the electrodes porosity down to 30–40%. Similarly, the use of high-density pseudocapacitive oxides greatly enhances the volumetric energy density of the related devices. Combining both parameters (porosity of 30%, density of 4.5 g cm −3 , active material capacitance of 250 F g −1 ) can lead to a 28000 F device compared to only 3000 F for a commercial cell of the same volume. The design of asymmetric aqueous devices by combining two high-density pseudocapacitive oxides with reasonable specific capacitance (≈100 F g −1 ) is also an interesting way to further improve the cell voltage and subsequently the volumetric energy density. Additionally, the use of aqueous electrolytes enhances the safety of the cells. Finally, the provided spreadsheet will help to envision different associations of pseudocapacitive and/or capacitive materials and to predict their performance when used in real life cells.

Country
France
Keywords

[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!