Powered by OpenAIRE graph
Found an issue? Give us feedback

UPJV

University of Picardie Jules Verne
23 Projects, page 1 of 5
  • Funder: European Commission Project Code: 101069244
    Funder Contribution: 150,000 EUR

    The SMARTISTIC project aims at developing and demonstrating a first prototype of a smart and interactive Augmented Reality (AR) software designed to assist in the decision-making of battery scientists, engineers and operators while they are working in electrode formulation and manufacturing in laboratories or in production lines. The software will be usable from tablets and AR glasses by touch gesture and hand gesture respectively. The software will blend holograms with the real world manufacturing equipment. Such holograms will be powered with the unique physical and machine learning (ML) models developed and validated experimentally in my ERC CoG ARTISTIC project and which can predict the impact of manufacturing parameters on the final electrode properties. By interacting with the holograms and without the need of programming skills, a user can in real-time create databases from her/his ongoing experiments, launch computations for analysis of experimental results, or request ML predictions about the impact of her/his intended formulation and manufacturing process on the electrode properties. She/he can also use the software to analyze possible deviations between the experimental results and the predictions to identify more easily factors that could explain unexpected experimental results. The prototype will be developed by accounting for the users' needs and from the observation of work situations. Once developed, we will perform tests and demonstrations to assess the software usability and ergonomics for its improvement while used in real situations. They will be carried out in the battery manufacturing platform of our laboratory and in companies and in institutes which already manifested interest in our proof of concept. The assessments will permit improving the software to ensure its wide acceptance. We will also analyze the IP, technology transfer and market opportunities to valorize the intended software, also thanks to networking activities.

    more_vert
  • Funder: European Commission Project Code: 318977
    more_vert
  • Funder: European Commission Project Code: 632565
    more_vert
  • Funder: European Commission Project Code: 778072
    Overall Budget: 882,000 EURFunder Contribution: 837,000 EUR

    Nowadays smart materials play a crucial role in the next-generation of intelligent devices and sensors, smart homes, autonomous devices, and robotics. Nanostructuring materials open up new horizons bringing in their multifunctionality and reduce the energy consumption. This reveals new scientific avenues and paves ways for breakthroughs in technology. Realization of structured materials with the strong coupling of electric and magnetic order and large multicaloric properties is a milestone for modern electronics and the gate for fascinating applications. In this context, we develop the partnership within the RISE consortium ENGIMA, involving the academic partners from two EU Member States, France and Slovenia Third Countries Universities in Morocco and Russia the non-academic SME from Associated Country, Ukraine. The network combines the complementary interdisciplinary and intersectoral expertise with established collaboration between partners and clear potential for skills transfer and exchange of knowledge, extended from fundamental to applied physics and from material chemistry to industrial nanotechnologies. Consortium defined a research objective of exploring the nanostructures in a form of tethered magnetic 1-D/piezoelectric nanostructures and magnetic/piezoelectric superlattices to obtain new ferroic materials with giant magnetoelectric and multicaloric functionalities that have potential applications as magnetoelectric sensors and, telecommunication devices. This task will be achieved by joining the efforts through the staff exchange, sharing knowledge, innovation and by multidisciplinary training of the team of collaborating young researchers able to conduct the research and exploit its application to this new area.

    more_vert
  • Funder: European Commission Project Code: 620173
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.